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Abstract. The spin model of Coolen et a[ ,  involving slow dynamical laws for the couplings 
linking fast spins, is considered as a spitbglass model having explicit quenched disorder. The 
thermodynamic behaviour predicted is reminiscent of a Sherrington-Kirkpahick spin-glass with 
one-step replica-symmetry breaking-generalizing the parallels of the simplest form of this 
model, which was entirely free of frozen disorder, However, even though the slow evolution 
of the couplings allows some balancing between achieving unfmstmted spin configurations and 
adopting those favoured by the quenched disorder, it is seen that this is not generally sufficient 
to avoid replica-symmetry breaking thoushout the frozen phases. Moreover. there are seen to 
be two distinct types of spin-glass phase, each of which has both ergodic (replica-symmetric) 
and ergodicity-broken regimes. 

1. Introduction 

The magnetic-spin model introduced by Coolen et al (1993) provides a convenient handle 
on the equilibrium properties of a class of idealized systems in which both spin moments and 
their mutual interactions may evolve stochastically, on their respective, disparate timescales. 
Moreover, the simplest form of the model was shown to exhibit close parallels with the 
Shenington-Kirkpatrick (1975) (SK) spin-glass model, even in the absence of explicit 
quenched disorder, and also to offer a novel perspective on the replica method. In this 
paper we will examine the effects of including an explicit frozen randomness into the 
dynamics which directly induces the interaction weights to have a similar form to those of 
the SK model, in which they are fixed disordered variables, while still allowing them some 
diffusive motion. We will see that this imposition leads to new thermodynamic phases and 
extends the parallels between the replica method and the original formulation of the model. 

We will first outline the dynamical laws that we will be considering, in a slightly more 
general form than has been presented previously. Thereafter, in section 3 the b&ic analysis 
of the model will be discussed, and its relation to the pattern of replica symmetry breaking 
seen in the SK model will be indicated in section 4. The thermodynamics of the model 
will be considered in section 5, followed by a discussion of the problems of simulating the 
model numerically. Our conclusions are ,offered in section 7 .  

2. Overview of the model 

A brief description of the dynamical laws implicit in the Coolen model will be given; a 
fuller discussion may be found in Penney et al (1993). A set of N Ising spins, Si E [H), 
are imagined to be joined by symmetric, real-valued interaction weights Ji,, with both these 
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sets of quantities allowed to evolve in time. Centrally, it is assumed that the (stochastic) spin 
dynamics are very fast compared with those of their interactions, so that on the timescale 
over which these couplings change, the spins can be considered always to be in a state 
of dynamic equilibrium. With the imposition that Jij = 41, the dynamical laws for the 
spins may be assumed to be such as to give an equilibrium distribution of the Boltzmann 
form. This will depend on a characteristic temperature of the spin dynamics j3-I and a 
Hamiltonian such as 

R Penney and D Sherrington 

icj 

in which appear the couplings {Jij), along with some externally imposed fields hi. In 
general, the connectivity of the system need not be complete, and each parameter cij E IO, 1 J 
controls whether the bond linking given sites i and j is present. Inspired by processes 
believed to occur in neurophysiological tissue, as well as by analytic simplicity, the 
following form of interaction dynamics has been proposed: 

where (SjSj) embodies the mutual correlation of spins at either end of the bond Jij. involving 
a thermal average with respect to the spin dynamics. (The precise form of the evolution 
of bonds where cij = 0 is of little significance.) External biases {Kij} may be used to 
steer the weights towards some preferred values and uncorrelated Gaussian white noises, 
~ ; j ( t ) ,  with an associated temperature scale j-’, are also involved, producing a Langevin 
dynamics for the couplings. (The noise is completely specified by its first two moments; 
(qij(t)),, = 0, (qij(f)q&’))a = ZB-lrS(ij,(k&t - t’).) Factors of N in (2.2) are needed to 
ensure a sensible thermodynamic limit N + 00, and depend on the mean connectivity of 
the network via the quantity (, 

so that ( = 1 for a fully-connected system, and t = 0 for a network of finite connectivity, 
such as a finite-dimensional latticebased model. 

With the assumption that the weight dynamics are slow, the spin-correlation functions 
may be specified in terms of the partition function of the spin system (for a given choice 
of couplings), and (2.2) may thereby be rewritten as a diffusion in a potential 

where the spin-partition function is given by the standard expression 

zp(IJij1) = Tr(s,) exp(-BH(ISiJ, {JijJ)). (2.5) 

This identification allows the equilibrium distribution of the couplings to be specified 
immediately, it being another Boltzmann distribution, with an associated partition function 
of the form 
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The ratio of characteristic (positive) temperatures, denoted by n, will later become identified 
with the dimensionality of a replica space. From In ?a one may extract cumulant averages 
of the weights, along with appropriate averages of the spin moments, by differentiation with 
respect to hi and Kjj, interpreting these as sources in a field-theoretic sense. 

In the basic formulation of this model, both these sets of sources were taken to be 
homogeneous (hi = h Vi, Kij = K Vi ,  j ) ,  and complete connectivity was assumed 
(cij = 1 Vi, j ) .  The model was therefore entirely free of quenched disorder and yet, 
particularly for small n, exhibited spin-glass character owing to the stochasticity of the 
weight dynamics and their lethargy with respect to those of the spins. Moreover, in this 
formulation the model shows close parallels with the Shenington-Kirkpatrick (SK) spin-glass 
model which explicitly includes quenched random interactions, although the flexibility of 
the weights is found to show non-trivial effects in terms of varied phase-transition order 
and relocation of phase boundaries. In this work we will examine the inclusion of explicit 
disorder into the model, which in general may be motivated by at least two differing 
considerations. 

Firstly, it would be interesting to examine the effects of assuming the Kij to be quenched 
disorder variables. The disorder would then merely be a bias on the weight dynamics, 
rather than being a prescription for the weights themselves. This might parallel a quenched 
magnetic alloy in which the magnetic ions are relatively firmly fixed at irregular positions 
(whose mutual influences are represented by the quenched random Kjjs), but about which 
some irregular motion might be possible on slow timescales (reflected in the Jij-dynamics 
themselves). 

An alternative source of quenched disorder can arise in moving towards a finite- 
dimensional model. Even though the mean-field theory of disordered systems is quite subtle 
(e.g. Mkzard et a1 1987), the comparative simplifications it offers relative to techniques 
needed for finite-range systems mean that it is highly convenient to have couplings that 
are not influenced by the spatial separation of the sites they connect. Therefore, of the 
two central properties of a low-dimensional lattice-based model, namely short-ranged bonds 
and finite connectivity, the latter is probably the easier to incorporate. Comparison of the 
analyses of the Viana-Bray (1985) and Sherrington-Kirkpatrick (1975) spin-glass models 
shows that even this step is quite cumbersome. Preliminary investigations suggest that 
finite connectivity introduces few qualitative effects that are not already present in the basic 
model or the manifestation that we are about to discuss. Most notably, both the disordered 
models exhibit two distinct types of spin-glass phase, with variable phase transition orders. 
However, in systems of random finite connectivity, owing to the existence of non-trivial 
correlations between pairs of couplings the weight-dynamics impact upon the, location of 
phase boundaries over the entire range of temperature ratios n ,  rather than only for n beyond 
certain thresholds. There is also a heightened ground-state degeneracy resulting from the 
presence of extensive numbers of small disconnected spin-clusters. 

In a disordered system, the expectation that physical observables should be self- 
averaging (i.e. insensitive to the precise values of the random variables, and influenced only 
by their statistical properties) means that it is the generator of such observables In ia, rather 
than itself, that is anticipated as being self-averaging. The infamous awkwardness of 
needing to perform the formal average-(ln 2)  will be tackled by invoking the replica method, 
via which ( I n i )  is replaced by lim,i,o((?) - l ) / r  and this latter quantity is evaluated by 
attempting an analytic continuation from integer r .  Given that the factor of Z$ within & 
(2.6) will itself require similar continuations for its evaluation, by including disorder in our 
system two levels of replicas will be needed. This feature leads to parallels with the form 
of replica-symmetry breaking believed to be exhibited by ordinary disordered systems, and 
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accordingly involves an augmented set of order parameters as compared with the respective 
canonical systems. For notational conciseness, those r replicas introduced to perform the 
disorder average will be labelled by indices in Roman script and be called 'Roman' replicas. 
while those used in treating [Z,]. will be given Greek-script indices, and be referred to as 
'Greek' replicas. Thus, for each of the r replicas involved in the disorder average, there 
are II replicas related to the temperature ratio 818, whose labelling is entirely arbitrary with 
respect to that in other Roman replicas. 

R Penney and D Sherrington 

3. Quenched random biases 

We will confine attention to a fully connected model (cij = 1 Vi ,  j ,  so that 5 = 1) in which 
the biases present in the weight dynamics are quenched random variables. For simplicity, 
these will be assumed to be drawn from independent Gaussian distributions whose mean 
and variance scale appropriately with system size so as to ensure a sensible thermodynamic 
limit. Thus the biases will be taken to be disbibuted according to 

where Bij = K i j / ( p N ) ,  a form closely reminiscent of the bond distribution of the SK model, 
and henceforth we will assume there to be no external fields on the system, so that hi = 0. 
Introducing two levels of replicas, one to assist with averaging the free energy of the weight 
system, and the other to aid evaluation of the Hamiltonian of the couplings, calculation of 
this free energy begins from 

in which 01 E (1,. . .n], J = ( jp ) - [  and ( ) B  denotes an average over the distributions 
~ ( B i j ) .  By performing the integrals over the replicated couplings J;, then the biases 
Bij, and using various Hubbad-Stratonovich transformations, one may reduce (3.2) to an 
extremization problem in the space of some appropriate order parameters (cf Kirkpatrick 
and Sherrington 1978). These parameters, in natural generalization of those familiar from 
typical replica calculations, carry two sets of replica labels. Parameters that involve a pair 
of replicas can connect either two distinct Greek replicas within a single Roman replica 
(q:'), or two Greek replicas within distinct Roman replicas (&. The precursor of the free 
energy is thus given by 

( [ i j ] r ) s  = exp N{$nrB2@ + 3 t nrin2+extr[,,),[,.j,(,j~(1m:1, ( q ; : ~ ,  { q : ~ :  n ) )  (3.3) 

in which 
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and 

(3.4) 

The scales of S, Bo and j may be fixed by setting = 1, thereby eliminating an invariance 
of the dynamical laws in the form originally specified. 

It,  is usual, by way of a first step, to assume that the replica-dependent order 
parameters that extremize the relevant free-energy functional are independent of their 
indices. Conventionally, this hypothesis is taken to be equivalent to an assumption of 
ergodic dynamics. Within this ansatz one may readily perform the analytic continuation 
r + 0, yielding 

1 1 1 1 1 
Iim-F(m,qll,qz;n)=-n-BBom'--n(n- I ) - ~ Z ( 1 + ~ ( ~ ~ ) z - n 2 - ~ Z ( q ~ ~ ) z  
r - d  r 2 2 2 2 

and moreover give simple interpretations of the order parameters in terms of appropriate 
averages over the various dynamics, 

Herein ( ) represents - a thermal average over the spin dynamics, for a given choice of 
couplings and biases, is a thermal average over the coupling dynamics with fixed biases, 
and ( ) B  is again an average over the disorder of the bias distribution. The assumption of 
self-averaging means that an average over sites i may be replaced by a mean with respect 
to the distribution of the disorder variables. One may give concise expressions for various 
spin averages in terms of these fundamental order parameters: 

/Dy cosh"(E)tanh""(E) (hw) = / D x f i  
"=I B a=l / Dy cosh"(&) 

So,  for^ example, m, ql1 and 42 correspond to choices U, = ( l , O ,  .. , ,O), U, = 
(1, 1,0, . . . , 0) and U, = (2,0, . . . , 0), respectively. These relations readily yield the 
inequalities q2 2 411 2 mz. 



4032 

4. Parallels with replica-symmetry breaking 

R Penney and D Sherrington 

It is noteworthy that within the replica-symmetric ansatz, the form of the free energy (3.5) 
is quite reminiscent of the free energy of the SK model within the one-step replica-symmetry 
breaking approximation: 

1 1 1 1 1 
lim -Pi&, q0,q1; n) = -TpJom* - -(n - 1)-p2(q1)* -n-p*(qo)* 
r - to r 2 2 2 

(4.1) 

in which 41, q0 and n parameterize the first step in the Parisi ansatz for the order parameter 
matrix qeB (Parisi 1980b) and the replica dimension, here denoted by r ,  has been taken to 
zero. We note that our labelling of these parameters differs from that of Parisi (1980a.b) 
and M6zard et al (1987tthese authors use n for the replica dimension, m to describe 
the geometry of the matrix q@, and typically avoid introducing an order parameter to 
quantify net magnetization-but some conflict with either this notation or that of our original 
discussion of the coupled dynamical model (Penney et al 1993) seems inevitable. As an aid 
to the visualisation of the parameters as they will be used here, we may depict the one-step 
Parisi ansatz used in the SK model as follows: 

where each block encloses matrix elements that are equal to unity. 
In the context of neural network models, it has also been noted that two levels of replicas 

lead to formulae that exhibit similarities with this pattern of replica symmetry breaking in 
a single set of replicas (Monasson and O'Kane 1994). The main differences relative to 
(3.5) are the matching of prefactors of q1 and 40 (as compared to (1 + J)q2 and q11), 
an overall factor of I / n  by which these two functionals differ, and the need to extremize 
PiK with respect to n in addition to m, 40 and 41. Dynamically, the breaking of replica 
symmetry in the SK spin glass is interpreted as resulting from the spin dynamics becoming 
confined in one of a set of inequivalent thermodynamic states, so that partial freezing occurs, 
without equilibrium being established between these pure states. Various timescales are 
then associated with the traversal of the multifarious energy barriers that enclose ergodic 
components of the spin phase space. The one-step breaking in the SK model therefore 
parallels the two disparate timescales that are represented by the spin and weight dynamics 
in the coupled-dynamical formulationt. The limit J + 0 (via p + CO), in which the two 
qs enter on equal footing, represents a situation in which the biases Eij  entirely dictate the 
states of the couplings, overruling the influence of the spins or Langevin noises. That this 

t This suggests that further steps in the Parisi h i e m h y  of replica-symmetry breaking may be emulated by allowing 
the biases Bij to have their own, still slower, stochastic dynamics, which in t m  ax driven by their own very 
slowly changing biases. and so on. This hierarchy of dynamics is also analogous 10 the many spin timesales used 
in Sompolinsky's dynamical analysis of the SK model (1981). 
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physically corresponds with the SK model itself suggests that ergodicity will not maintain in 
the present model in this limit. However, it is conceivable that, for finite .f, this system will 
be ergodic (in the sense of preserving replica symmetry) and ye: show formal similarity with 
a spin system where ergodicity i s  broken, and thus that the slow evolution of the weights 
provides a means of penetrating the energy barriers that obstruct the spin dynamics in the 
SK model. Indeed, analytically, one means proposed for regulating the long-time behaviour 
of the SK model is allowing slow evolution of the disordered bond variables (Homer 1984). 

Thus the coupled-dynamical model can offer an alternative perspective on the replica 
method even when replica symmetry is observed to break. Moreover, the present 
formulation affords an interesting interpretation of the saddle-point condition for the Parisi 
order parameter n (or m in the notation of Parisi 1980a, b). For the SK model, in the 
Parisi hierarchical replica-symmetry breaking scheme (Parisi 198Oa) the matrix 4" is 
parameterized by a set of spin-averages, (q,), and a set of weight-factors, {n,). The need 
to extremize the relevant freeenergy functional in the mean-field approximation (analogous 
to (3.4)) with respect to q@, translates naturally into an extremization with respect to [e}. 
Furthermore, it is reasonably proposed (Mkzard et al 1987) that the variables (no]  should 
also be varied so as to extremize' the free energy. In the coupled dynamical model, where 
n translates into a physically-significant ratio of characteristic temperatures, one may seek 
a physical interpretation of the saddle-point condition on n,  by considering the implication 
of the equation 

(4.3) 

where FeXu is the result of the extremization required in (3.3). This may be translated into 
the following equality of time-averages: 

(4.4) 

i.e. the temperature of the coupling system should be chosen so that the free energy 
appropriate to the timescale of the spins (-@-I In Zp) fluctuates symmetrically about the free 
energy for long timescales, namely that of the couplings themselves (-b-' In 2 ~ ) .  (It should 
be noted that this result does depend on the choice of zero of each free energy; particularly, 
we have chosen the free energy of the couplings to be zero when the temperature ratio 
n is zero, under which circumstances the couplings diffuse entirely uninfluenced by the 
spins.) Given that this consequence of (4.3) is true. even in the l i t  .f + 0, representing 
an SK model, and moreover does not itself depend on the validity of the replica-symmetric 
assumption in the coupled-dynamical model, the extremality condition a/anFiK = 0 is seen 
to have an appealing physical analogy. Although this equality of free energies is reminiscent 
of an equilibrium between two phases of a thermodynamic fluid, it is not clear how to make 
this simile more definite. However, we will shortly see that achieving the balance between 
these two free energies (4.4) will itself lead to replica-symmetry breaking even though the 
coupling dynamics may act to reduce the level of frustration within the spin system. 

5. Inhinsic features 

Important to the similarities highlighted above is the assumption that the replica-symmetric 
ansatz is valid for the coupled-dynamical model. It is well known from the studies of the 
SK model that spin-glass phases and complex thermodynamic states are closely linked, aid 
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that whilst RSB need not alter all aspects of qualitative behaviour, analytic descriptions or 
quantitative characteristics can be changed significantly. Therefore, it is prudent to test the 
viability of the replica-symmetric approximation to the extremum of the functional (34, an 
ansatz that can fail in at least two distinct ways. Firstly, central to the validity of the saddle- 
point integration that underlies the extremization, is the local stability of the extremum; i.e. 
all eigenvalues (in the full replica space) of the full free-energy functional evaluated at 
the replica-symmetric saddlepoint must be such as to ensure convergence of the integrals. 
Alternatively, even if this condition holds, it is conceivable that a replica-symmetry-broken 
saddle-point will be the true thermodynamically favoured configuration, such that a first- 
order transition from a replica-symmetric state to one of broken replica symmetry could 
occur. Although there are instances where the latter pathology is relevant (e.g. Krauth and 
M t m d  1989), studies of the canonical realization of the coupled dynamical model suggest 
that it is failure of the local stability of the replica-symmetric saddle-point that signals 
the onset of replica-symmetry breaking, rather than any form of discontinuous transition. 
Following de Almeida and Thouless (1978) we have therefore examined the eigenvalues of 
the free-energy functional (3.4) at the RS saddle-point; these may be calculated in analogy 
with those appropriate to the SK model. Given that the full Parisi hierarchy of RSB is 
believed to be only marginally stable for the SK model in its spin-glass phase, i.e. always to 
have zero-modes about the Parisi saddle point (de Dominicis and Kondor 1983), it should 
be emphasized that there is little point in examining the local stability of a one-step breaking 
scheme for this model itself, for as soon as the replica-symmetric ansatz fails, it is to be 
expected that only the full hierarchy will avoid instability. However, that the coupled- 
dynamical model remains inequivalent to SK model.unti1 .f -+ 0 means that the similarity 
of its replica-symmetric formulation to that of the SK model (allowing for one-step RSB) 
does not necessarily imply that the replica-symmetric assumption is always inadequate for 
the present model in the spin-glass phases. 

The stability of the replica-symmetric saddle-point may be analysed following the 
method of de Almeida and Thouless (1978); a brief summary of this method is given 
in appendix A. Given the two levels of replicas present in the analysis, two distinct forms 
of RSB can occur, signalled by the replicon eigenvalues I G  and IR. Before relating RSB to 
the phase structure of the model, we note that there do indeed appear to be regions of the 
frozen phases where the replica-symmetric approximation for the coupled-dynamical model 
is correct. 

Turning now to the phase boundaries themselves, whilst 411 and q2  both resemble the 
Edwards-Anderson order parameter (Edwards and Anderson 1975) familiar from studies 
of spin glasses, it should be emphasised that these quantities will play distinct roles in 
determining the phase structure of the model. Neither parameter is sufficient, solely in 
combination with m, for distinguishing all types of ordered phases from the high-temperature 
paramagnetic phases. Given that mean-field theory has the useful habit of implicitly 
identifying physically significant order parameters, the emergence of qll  and 42 already 
suggests that two forms of spin-glass phase are to be expected. Numerical extremization 
of the freeenergy functional confirms this distinction, and some typical evolutions of these 
order parameters in temperature are shown in figure 1. 

By expanding the extremality conditions appropriate to (3.4) in terms of the order 
parameters, one may distinguish first-order phase transitions from second order, and 
furthermore, where phase changes are second order this method will also yield algebraic 
conditions for the temperature where these changes occur. In the interests of simplifying 
this goal, we will hereafter take Bo = 0, so that m = 0, indicating a general absence of 
ferromagnetism. Notationally, paramagnetic phases (where q2  = q r I  = 0) will be labelled 
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Figure 1. Evolution of order pammet? q2 an? 411 with spin temperature ,!-I for various 
temperature ratios n, all at Bo = 0, E = 1. 3 = 3. Also shown are results of computer 
simulations of the dynamical model; their limited similarity to the analytic predictions is 
discussed in the text. 

‘Y,  those spin-glass-like regions where q2 > 0 and 411 = 0 will be ‘SGI’, and situations in 
which both q2 and 411 are finite will be denoted ‘SG2’. Regarding the P+SGl transition, 
this may be shown to be second order for n < 2, and occurs where D2(1 + j) = 1, whilst 
if n > 2 this boundary is first order and moves towards higher temperature. Where the 
mutation from SGl to the more frozen state of SG2 is distinct from the P+SGl transition, 
the former boundary is always second order and occurs for @((PI - I )q2  + I ]  = 1. However, 
there is also the possibility of a joint first order transition if n .> 2, thereby excluding any 
SGl behaviour. Numerical solution of the relevant boundary conditions, for a particular 
choice of j ,  leads to a phase diagram as shown in figure 2. Qualitatively, reducing j moves 
the P-SGI transition down towards 1/p = 1 and reduces the range of n beyond 2 over 
which this transition is distinct from the SGlSG2 boundary. 

The curves defined by the vanishing of the eigenvalues i~ and ho are seen to indicate 
that replica-symmetry can be lost within the interior of the SGl phase for n < 1, but that 
this pathology does not occur outside the more frozen SG2 phase while n 1. The Roman 
AT line (on which h~ = 0) crosses the SGlSG2 at n = 1, = 1, where there is cusp, while 
the Greek AT line (where XQ = 0) has a form similar to that of the basic coupled-dynamical 
model, here also signalling re-entrant RSB only beneath n N 0.3. However, calculation of 
the boundary defined by the matching of the spin and coupling free energies within the 
replica-symmetric ansatz (4.4) indicates that this lies entirely within a region where replica 
symmetry is not preserved, and that this line does not cross into a region where both 411 and 
42 are non-zerot. These features weaken the prospective link between an ergodic system 
and the spin-glass model of Sherrington and Kirkpatrick when the latter is considered in 
a one-step replica-symmetry breaking scheme, wherein both 4 s  are necessary within the 
single spin-glass phase. Indeed, even though the spins may here favourably influence their 
own mutual interactions, there do not appear to be any regions (figure 2) in which replica- 
symmetry breaking can be avoided while either choosing n according to the balancing 

t This would a p p w  to hold also For smaller values of .i. as would the existence of re-entrant Greek RSB only 
below n 2 0.3 and the occurrence of a cusp in the Roman AT line at n = I .  p = 1. 
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Figure 2. The phase diagram for the quenched, random bias model is shown for BO = 0, t = 1. 
.i = 3. The short dashed curves denote second-order phase boundaries; the first-order p m  of 
the P-SGl boundary is dotted where it is distinct from the P-SGZ boundary, and where the two 
are coincident, the boundary is draw in the continuing full line. The cusped contiguous cume 
denotes the Roman AT line while that lying below n 2 0.3 is the Greek AT line. The long-dashed 
curve is the line on which the spin and coupling free energies match, with larger coupling free 
energies being manifested towards greater values of n. 

condition (4.4), or having both qs finite with n lying in the range (0,l). These issues 
themselves do parallel the need for levels of RSB beyond the first step in the SK model 
within the interior of the spin-glass phase. Nevertheless, considering that the biases Bij 

encourage couplings that resemble those of the SK model and that there are yet significant 
regions of each spin-glass phase where replica symmetry is not broken, it would appear that 
the diffusion of the couplings may help reduce the incidence of replica-symmetry breaking 
in the frozen phases. Despite this, it is not clear on the basis of the results available from 
this model, whether it is in fact possible to choose weight dynamics that lead to spin- 
glass ordering closely similar to that of the SK model on modest timescales without there 
automatically existing many non-equivalent macroscopic states on long timescales. 

6. Computer simulations 

In terms of its thermodynamical behaviour, the main distinction of the coupled dynamical 
model having quenched random biases from conventional spin-glass models is the existence 
of two distinct forms of spin-glass phase, which is pertinent to the analytic similarity of 
this model with the SK model with one-step RSB. We have therefore sought to confirm that 
the two order parameters q2 and 411 (as defined by (3.7)) do indeed play distinct roles, and 
become non-zero at different temperatures. 

However, there are a number of obstacles to this goal, which combine the difficulties 
inherent to the canonical model (cf Penney et al 1993) and those associated with disordered 
systems in general (Fischer and Hertz 1991). Cenml to the model itself is the need to allow 
the spin system to reach thermal equilibrium before the couplings are changed significantly, 
and that these themselves should be allowed to reach equilibrium. Simulating the model 
as a Monte Carlo dynamics within a Langevin dynamics therefore is a labour-intensive 
undertaking, which already limits the size of system that can be reliably simulated to rather 
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modest proportions. Further, in evaluating (S;Sj) as an importance-sampled time-average 
over the spin dynamics, the need for careful selection of the timescale of this average is 
emphasised by the wish to distinguish 411 from 42.  Implicit in the theory for Bo = h = 0 is 
the assumption that the symmetry H ( [ S ; ] )  = H ( [ - S ; ] )  is spontaneously broken, i.e. that 
(Si) can be non-zero. Thus, in evaluating the trace in Zb (2.5). all spin configurations cannot 
be included, even in principle. Analytically this difficulty can be subdued by including 
some form of small external field, h; or BO, performing the analysis while retaining this 
field until only ultimately the limit hi, BO + 0 is taken. Such an approach is awkward 
in a simulation, so a careful choice of averaging timescale is needed, such that (S,) is 
both representative of its value in thermal equilibrium (favouring protracted averages), but 
respects the spontaneously broken symmetry (which requires restraint in the a v s i n g  time). 
However, if 411 = (1/N) ximz is ever to be zero while qz = (l/N)Ci (Si)z is finite, 
the dynamics of the couplings must allow the magnetizations of individual spins to reverse 
as these interactions evolve. This requires that the timescale of the weight average should 
itself be large. 

These subtle and conflicting considerations have generally proven difficult to satisfy and 
therefore, in order to assist with the task, a number of compromises have been tolerated. 
Firstly, in order to discourage the spin system from freezing with finite net magnetization 
(which risks leading to an unwanted ferromagnetic bias in the couplings via (2.2)), an 
analytically benign term has been added to the spin Hamiltonian, 

such that for h = BO = 0, this term has no effect on the theory, but is computationally 
useful in discouraging ordered spin freezing. Secondly, given that the theory requires no 
more explicit choice of the spin dynamics other than that they should have an equilibrium 
dynamics characterized by the Boltzmann distribution, it is advantageous to choose dynamics 
that are convenient practically. A single spin-flip Metropolis dynamics has the attraction of 
simplicity and conciseness, and therefore forms the core of the updates of the spin system. In 
addition, however, in order an attempt to accelerate equilibration near critical temperatures 
(be they those of the spin system in isolation or those of the composite system), we have 
included intermittent multiplespin processes. These involve considering flipping small 
groups of spins-chosen at random, in the absence of a superior scheme that is concisely 
implemented (cf Wolff 1989)-according to the implied change in the spin Hamiltonian 
(6.1) and the Metropolis algorithm (Metropolis et al 1953). 

In other respects the simulations are almost identical to those applied to the original 
 formulation^ of the model (Penney et al 1993), although we have tried adjusting the 
equilibration timescales in order to cater better to the new variation of the theory. In the 
notation of the latter paper, the entire set of spins are updated R I  = 500 times in order to 
allow thermal equilibration for the pertaining values of the couplings, before raking thermal 
averages of the products S;Sj over the following Rz = 1500 spin-updates. (Multi-spin 
processes occur once in every ten spin updates, and involve clusters of three spins.) After 
each iteration of this entire series of moves, the couplings are adjusted in regular time-steps 
of t + t + 0.02t, and after R )  = 500 such increments, the next R4 = 1500 updates are 
used to measure the order parameters assuming the system now to be in complete thermal 
equilibrium. These measurements are themselves averaged over twenty realizations of the 
quenched disorder, and the associated standard deviations are used to produce the error-bars 
shown in figure 1. The consumptive nature of the dynamics-involving N ( R I  t R 2 ) ( R 3 t R 4 )  
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elementary spin updates per measurement-limits us to considering systems of only N = 25 
sites. In terms of the theoretical picture of the dynamics, the parameters RI ...4 need each 
only be large enough to reflect the thermal equilibrium properties of the spins and couplings 
(without being so large that no spontaneous symmetry breaking is observed), but they are 
otherwise unrelated to the timescale r. Although the latter may be used to adjust the speed 
of the coupling dynamics, because we have insisted on the spins continually maintaining 
their thermal equilibrium as the couplings gradually evolve, t does not alter the order of 
magnitude of this speed relative to the very much faster spin processes. 

While it is clear that the results shown in figure 1 do not show perfect agreement with 
the theoretical predictions, there are a number of encouraging correspondences. Firstly, for 
each of the temperature ratios n simulated, after allowance is made for the modest system 
size, the order parameter 42 shows fair quantitative agreement with theory, and seems to 
predict a paramagnetic to spin-glass transition close to that indicated by the analysis. It is 
also clear that the two order parameters 411 and q2 are distinct measures of the spin freezing, 
with a finite value for q2 not implying that 411 should also be finite. Moreover, although the 
quantitative evolution of the measured 411 does not agree with theory when it is predicted to 
be finite, there is a plausible agreement in the location of the transition from the regime of 
411 = 0 to that of 411 > 0, again making due allowances for the limited size of the system. 
However, it would seem that with the dynamical parameters chosen, freezing of the spin 
system is more abrupt than in the theoretical picture. Nevertheless, it is probable that if 
larger systems could be simulated, and over longer timescales, the theory would be more 
convincingly vindicated, although the present attempts do highlight the great awkwardness 
of a system with two levels of frustration and disorder. 

7. Conclusions 

We have examined a spin model in which both spins and their mutual interactions can 
evolve, but on different timescales. Disorder is present both explicitly as quenched random 
parameters in the the stochastic interaction dynamics and by implication also in the dynamics 
of the spin moments. Identifying the ratio of the characteristic temperatures of the spin and 
coupling systems as a relevant quantity, comparison of theoretical predictions of behaviour 
of this model with one in which there is no externally imposed disorder, shows that both 
lead to varied phase transition character as this ratio n is changed. Both formulations show 
that the point n = 2 separates second-order transitions between paramagnetism and spin- 
glass ordering from those of first order, but a new thermodynamic phase has been show 
to arise from the random biases on the weight dynamics. Moreover, the introduction of 
disorder into the model has been shown to extend the parallels of the original work with 
the replica method, and provides an alternative physical metaphor for the phenomenon of 
replica symmetry breaking, but suggests that rather different forms of coupling dynamics 
may be necessary if the pathological existence of many non-equivalent thermodynamic states 
is definitely to be avoided. 
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Appendix 

An outline of the derivation of the AT eigenvalues of the free-energy functional in the 
random-bias model will be given. Although the symmetries that maintain within all steps of 
the hierarchical replica symmetry breaking scheme invite the application of grouptheoretic 
methods (e.g. Dorotheyev 1993), our less sophisticated methods follow those of de Almeida 
and Thouless (1978). 

The procedure starts by considering small fluctuations of the order-parameters about 
replica-symmetric values: 

(A.1) at9 - q,"B = q2 + E:# a i. ,3 qnb - 411 + qzf a -= b 

whereafter the free-energy functional (3.4) is expanded up to second order in and qzf, 
a task that involves a great many combinatoric factors appropriate to the diverse topologies 
of spin contractions. By construction, the first-order terms vanish at the replica-symmetric 
saddle point. In terms of the following short hands: 

J = ,@(E + .f) E =' (A.2) 

there are three groups of matrix element; those relating solely to fluchations about 42, 

- 
where r4 = ( ( S ) 4 ) B ,  r31 = ((s)3mB etc. (The labellings of these matrix elements are 
intended to represent generic examples of each type of element; all choices of indices 
with the same types of pairings between replicas in the bra and ket, consistent with the 
index constraints on and $f, are to be understood.) That the Hessian 'H is symmetric 
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implies that its eigenvectors must be orthogonal, a property that greatly assists in finding 
its eigenvalues. 

In view of the observation made by de Almeida and Thouless (1978) that fluctuations 
that involve less than two distinct replicas appear always to be stable close to the replica- 
symmetric saddle point, we will confine attention to the replicon modes only. Given that 
there are two levels of replicas involved, replicon fluctuations come in two flavours, in 
analogy with q2 and 411. Firstly, there are modes that couple to two Greek replicas (e, U) 
within a single Roman replica (c), which are parameterized as follows: 

R Penney and D Sherrington 

me - uu = e  
E:” = a  vac - %U 

”U- - b  C U # ~ , V  i f f = f  p # @ , ~ ’  - &c 
(A.6) 

E:8 = C U, p # 0, V $ ! = g  a . b # c  

~ z ’ = d  a j c .  

Orthogonality of these vectors with those of the lower-order fluctuations (namely those that 
involve entirely homogeneous changes in 4:’ and qtf and those that nominate a single 
special replica) implies that these vectors are limited to a onedimensional subspace. Their 
eigenvalue may then be shown to be 

he = K - 2 L +  M (A.7) 
whose structure resembles the replicon mode of the SK model found by de Almeida and 
Thouless (1978), and that of the non-disordered coupled-dynamical model (Coolen et al 
1993). The degeneracy of this eigenvalue is $n(n - 3). 

Secondly, modes coupling to two distinct Roman replicas (c. d )  are also permitted, and 
are parameterized thus, 

&p= &* v u -  - a  C U # ~ , V  7:; = d  

&a’ = Ed U’ - - b U, p # e ,  v 

E;’ = c  a # c ,  d $: = ~2 = f a # c, d (A.8) 

qcd e= - - qcd UY = e a # v , O  

~ 2 = g  a # e , o # v  

d = g ,  a , b # c , d .  
Choosing the components a-g so as to ensure orthogonality with the zero- and one- 
replica fluctuations again leaves a single free parameter, and automatically means that this 
eigenvector is orthogonal to the Greek replicon mode. The resulting eigenvalue is then 
given by 

whose degeneracy is irn(rn - n - 2). The relevant limit of these eigenvalues, r + 0, is 
readily effected. 
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